Scientific Research & Exploration: Check Out the Globe With Research Study and Advancement
Long, T. A., Brady, S. M. & & Benfey, P. N. Solutions approaches to identifying genes governing networks in plants. Annu. Rev. Cell Dev. Biol. 24 , 81– 103 (2008
Karlebach, G. & & Shamir, R. Modelling and analysis of genes regulating networks. Nat. Rev. Mol. Cell Biol. 9 , 770– 780 (2008
Chai, L. E. et al. An analysis on the computational strategies for genetics regulative network building and construction. Comput. Biol. Medication. 48 , 55– 65 (2014
Delgado, F. M. & & Gรณmez-Vela, F. Computational comes close to for genetics governing networks repair and evaluation: an assessment. Artif. Intell. Medication. 95 , 133– 145 (2019
Vijesh, N., Chakrabarti, S. K. & & Sreekumar, J. Modeling of genetics regulative networks: a testimonial. JBiSE 6 , 223– 231 (2013
Alvarez, J. M., Brooks, M. D., Swift, J. & & Coruzzi, G. M. Time-based systems biology approaches to catch and design vibrant genes governing networks. Annu. Rev. Plant Biol. 72 , 105– 131 (2021
Bechtold, U. et al. Time-series transcriptomics reveals that AGAMOUS-LIKE 22 affects main metabolic procedure and establishing treatments in drought-stressed Arabidopsis Plant Cell 28 , 345– 366 (2016
Gao, H. et al. Days to heading 7 , a substantial measurable locus developing photoperiod level of sensitivity and regional modification in rice. Proc. Natl Acad. Sci. U.S.A. 111 , 16337– 16342 (2014
Rong, W. et al. The ERF transcription aspect TaERF 3 promotes resistance to salt and drought anxieties in wheat. Plant Biotechnol. J. 12 , 468– 479 (2014
Clough, E. & & Barrett, T. The Genes Expression Omnibus information resource. Approaches Mol. Biol. 1418 , 93– 110 (2016
Banf, M. & & Rhee, S. Y. Computational reasoning of genes regulative networks: strategies, restraints and possibilities. Biochim. Biophys. Acta Genetics Regul. Mech. 1860 , 41– 52 (2017
Gupta, O. P. et al. From genes to biomolecular networks: a testimonial of evidence for identifying intricate natural feature in plants. Curr. Opin. Biotechnol. 74 , 66– 74 (2022
Araรบjo, I. S. et al. Stochastic genes expression in Arabidopsis thaliana Nat. Commun. 8 , 2132 (2017
Mercatelli, D., Scalambra, L., Triboli, L., Ray, F. & & Giorgi, F. M. Genetics regulative network reasoning resources: a helpful review. Biochim. Biophys. Acta Genetics Regul. Mech. 1863 , 194430 (2020
Kulkarni, S. R. & & Vandepoele, K. Thinking of plant genetics regulative networks utilizing data-driven strategies: a helpful recap. Biochim. Biophys. Acta Genes Regul. Mech. 1863 , 194447 (2020
Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. & & Guthke, R. Genetics regulative network thinking: details mix in vibrant layouts– a testimonial. BioSystems 96 , 86– 103 (2009
Qian, Y. & & Huang, S. C. Improving plant genes regulative network reasoning by integrative analysis of multi-omics and high resolution datasets. Curr. Opin. Syst. Biol. 22 , 8– 15 (2020
Akers, K. & & Murali, T. M. Genetics governing network reasoning in singular cell biology. Curr. Opin. Syst. Biol. 26 , 87– 97 (2021
Yuan, Q. & & Duren, Z. Presuming genes regulative networks from single-cell multiome details utilizing atlas-scale outside details. Nat. Biotechnol. 43 , 247– 257 (2025
Marku, M. & & Pancaldi, V. From time-series transcriptomics to genetics regulating networks: a testimonial on reasoning techniques. PLoS Comput. Biol. 19 , e 1011254 (2023
Zhao, M., He, W., Flavor, J., Zou, Q. & & Guo, F. A considerable recap and vital assessment of genes governing network reasoning contemporary innovations. Quick. Bioinform. 22 , bbab 009 (2021
Puลกnik, ลฝ., Mraz, M., Zimic, N. & & Moลกkon, M. Analysis and evaluation of Boolean techniques for reasoning of genes regulating networks. Heliyon 8 , e 10222 (2022
Perrin, B.-E. et al. Genes networks thinking utilizing vibrant Bayesian networks. Bioinformatics 19 , ii 138– ii 148 (2003
Mombaerts, L. et al. Dynamical differential expression (DyDE) reveals the duration control systems of the Arabidopsis circadian oscillator. PLoS Comput. Biol. 15 , e 1006674 (2019
Lu, J. et al. Causal network thinking from genetics transcriptional time-series response to glucocorticoids. PLoS Comput. Biol. 17 , e 1008223 (2021
Seeger, M. Gaussian refines for expert system. Int. J. Neural Syst. 14 , 69– 106 (2004
Huynh-Thu, V. A. & & Geurts, P. dynGENIE 3: dynamical GENIE 3 for the thinking of genes networks from time collection expression information. Sci. Rep. 8 , 3384 (2018
Rubiolo, M., Milone, D. H. & & Stegmayer, G. Extreme discovering tools for reverse design of genes governing networks from expression time collection. Bioinformatics 34 , 1253– 1260 (2018
Talukder, A., Barham, C., Li, X. & & Hu, H. Evaluation of deep finding in genomics and epigenomics. Quick. Bioinform. 22 , bbaa 17 (2021
Hoang, N. V., Park, C., Kamran, M. & & Lee, J.-Y. Genes governing network routed examinations and layout of storage space origin development in origin plants. Front. Plant Sci. 11 , 762 (2020
Ikeuchi, M. et al. A genetics regulating network for mobile reprogramming in plant regrowth. Plant Cell Physiol. 59 , 765– 777 (2018
Pajoro, A. et al. The (r) development of genes regulating networks controling Arabidopsis plant leisure: a two-decade background. J. Exp. Robotic. 65 , 4731– 4745 (2014
Tripathi, R. K. & & Wilkins, O. Solitary cell genetics regulative networks in plants: possibilities for boosting environment alteration tension and anxiousness stamina. Plant Cell Environ. 44 , 2006– 2017 (2021
Jones, D. M. & & Vandepoele, K. Recognition and advancement of genes regulating networks: understandings from relative investigates in plants. Curr. Opin. Plant Biol. 54 , 42– 48 (2020
Nolan, T. M. et al. Brassinosteroid genes regulating networks at mobile resolution in the Arabidopsis beginning. Scientific research study 379 , eadf 4721 (2023
Redekar, N., Pilot, G., Raboy, V., Li, S. & & Saghai Maroof, M. A. Reasoning of transcription regulative network in reduced phytic acid soybean seeds. Front. Plant Sci. 8 , 2029 (2017
Pink, H. et al. Acknowledgment of Lactuca sativa transcription components impacting resistance to Botrytis cinerea with preparing for network thinking. Preprint at bioRxiv https://doi.org/ 10 1101/ 2023 07ย 19ย 549542 (2023
Krouk, G., Lingeman, J., Colon, A. M., Coruzzi, G. & & Shasha, D. Genes governing networks in plants: figuring out beginning from time and perturbation. Genome Biol. 14 , 123 (2013
Muhammad, D., Schmittling, S., Williams, C. & & Long, T. A. Greater than satisfies the eye: emergent houses of transcription components networks in Arabidopsis Biochim. Biophys. Acta Genes Regul. Mech. 1860 , 64– 74 (2017
Varala, K. et al. Temporal transcriptional reasoning of vibrant regulative networks underlying nitrogen signaling and use in plants. Proc. Natl Acad. Sci. U.S.A. 115 , 6494– 6499 (2018
Zhou, P. et al. Meta genetics regulating networks in maize emphasize functionally appropriate governing interactions. Plant Cell 32 , 1377– 1396 (2020
Mรผller, L. M. et al. Differential outcomes of day/night indicators and the circadian clock on the barley transcriptome. Plant Physiol. 183 , 765– 779 (2020
Wilkins, O. et al. Egrins (environmental genetics governing impact networks) in rice that operate in the activity to water shortage, heat, and farming environments. Plant Cell 28 , 2365– 2384 (2016
Reynoso, M. A. et al. Genetics regulating networks create developing plasticity of beginning cell kinds under water extremes in rice. Dev. Cell 57 , 1177– 1192 (2022
Aalto, A., Viitasaari, L., Ilmonen, P., Mombaerts, L. & & Gonรงalves, J. Genes regulating network thinking from sparsely checked loud details. Nat. Commun. 11 , 3493 (2020
Ko, D. K. & & Brandizzi, F. Network-based methods for recognizing genes plan and function in plants. Plant J. 104 , 302– 317 (2020
Subbaroyan, A., Sil, P., Martin, O. C. & & Samal, A. Leveraging establishing landscapes for variation option in Boolean genetics governing networks. Brief. Bioinform. 24 , bbad 160 (2023
Balcerowicz, M. et al. An early-morning genes network managed by phytochromes and cryptochromes manages photomorphogenesis courses in Arabidopsis Mol. Plant 14 , 983– 996 (2021
Henriet, C. et al. Proteomics of establishing pea seeds discloses a center antioxidant network underlying the feedback to sulfur shortage and water tension. J. Exp. Robot. 72 , 2611– 2626 (2021
Depuydt, T., De Rybel, B. & & Vandepoele, K. Charting plant genes includes in the multi-omics and single-cell duration. Crazes Plant Sci. 28 , 283– 296 (2023
Cavill, R., Jennen, D., Kleinjans, J. & & Briedรฉ, J. J. Transcriptomic and metabolomic details adaptation. Brief. Bioinform. 17 , 891– 901 (2016
Agamah, F. E. et al. Computational methods for network-based integrative multi-omics analysis. Front. Mol. Biosci. 9 , 967205 (2022
Clark, N. M. et al. Integrated omics networks expose the temporal signaling occasions of brassinosteroid activity in Arabidopsis Nat. Commun. 12 , 5858 (2021
Montes, C. et al. Combination of multi-omics information discloses communication in between brassinosteroid and target of rapamycin complicated signaling in Arabidopsis New Phytol. 236 , 893– 910 (2022
Zhu, W. et al. A translatome– transcriptome multi-omics genetics governing network reveals the hard beneficial landscape of maize. Genome Biol. 24 , 60 (2023
Yang, S. et al. PPGR: a considerable seasonal plant genomes and plan data source. Nucleic Acids Res. 52 , D 1588– D 1596 (2023
Kang, H. et al. TCOD: an incorporated source for exotic plants. Nucleic Acids Res. 52 , D 1651– D 1660 (2024
Lan, Y. et al. AtMAD: Arabidopsis thaliana multi-omics organization information resource. Nucleic Acids Res. 49 , D 1445– D 1451 (2020
Yang, Z. et al. BnIR: a multi-omics information resource with numerous devices for Brassica napus research study and recreation. Mol. Plant 16 , 775– 789 (2023
Li, C. et al. Single-cell multi-omics in the medical plant Catharanthus roseus Nat. Chem. Biol. 19 , 1031– 1041 (2023
Alemu, A. et al. Genomic option in plant recreation: essential variables forming 20 years of progression. Mol. Plant 17 , 552– 578 (2024
Schrag, T. A. et al. Previous genomic projection: integrating numerous type of omics information can enhance projection of hybrid effectiveness in maize. Genetics 208 , 1373– 1385 (2018
Wu, P.-Y. et al. Restoration of projection capacity by incorporating multi-omic datasets in barley. BMC Genomics 23 , 200 (2022
Hu, X., Xie, W., Wu, C. & & Xu, S. A transmitted understanding technique incorporating a number of omic details enhances genomic projection. Plant Biotechnol. J. 17 , 2011– 2020 (2019
Knoch, D. et al. Multi-omics-based forecast of crossbreed efficiency in canola. Theor. Appl. Genet. 134 , 1147– 1165 (2021
Hu, H. et al. Multi-omics projection of oat agronomic and seed nutritional characteristics throughout setups and in distantly appropriate populaces. Theor. Appl. Genet. 134 , 4043– 4054 (2021
Wang, K. et al. DNNGP, a deep neural network-based method for genomic projection taking advantage of multi-omics details in plants. Mol. Plant 16 , 279– 293 (2023
Bhat, J. A. et al. Genomic option in the period of future generation sequencing for intricate characteristics in plant recreation. Front. Genet. 7 , 221 (2016
Hasan, N., Choudhary, S., Naaz, N., Sharma, N. & & Laskar, R. A. Current advancements in molecular marker-assisted option and applications in plant recreating programs. J. Genet. Eng. Biotechnol. 19 , 128 (2021
Qin, P. et al. Pan-genome analysis of 33 genetically differed rice inaugurations reveals surprise genomic variations. Cell 184 , 3542– 3558 (2021
Lozano, R. et al. Relative transformative genes of harmful great deals in sorghum and maize. Nat. Plants 7 , 17– 24 (2021
Sunlight, Y. et al. Aberration in the ABA genetics regulative network underlies differential development control. Nat. Plants 8 , 549– 560 (2022
Lรผ, P. et al. Genome inscribe examinations reveal the basis of convergent growth of fleshy fruit ripening. Nat. Plants 4 , 784– 791 (2018
Hickman, R. et al. Design and attributes of the jasmonic acid genetics governing network. Plant Cell 29 , 2086– 2105 (2017
Jamali, S. H., Cockram, J. & & Hickey, L. T. Is plant array registration equaling price recreation techniques? Euphytica 216 , 131 (2020
Wada, N., Ueta, R., Osakabe, Y. & & Osakabe, K. Precision genome changing in plants: reducing side in CRISPR/Cas 9 -based genome layout. BMC Plant Biol. 20 , 234 (2020
Li, B., Sunlight, C., Li, J. & & Gao, C. Targeted genome-modification devices and their advanced applications in plant reproduction. Nat. Rev. Genet. 25 , 603– 622 (2024
Mishra, R., Joshi, R. K. & & Zhao, K. Base modifying in plants: existing advancements, restraints and future implications. Plant Biotechnol. J. 18 , 20– 31 (2020
Molla, K. A., Sretenovic, S., Bansal, K. C. & & Qi, Y. Specific plant genome changing using base editors and prime editors. Nat. Plants 7 , 1166– 1187 (2021
Li, J. et al. Plant base modifying and prime modifying: the here and now standing and future viewpoint. J. Integr. Plant Biol. 65 , 444– 467 (2023
Frying Pan, C., Sretenovic, S. & & Qi, Y. CRISPR/dCas-mediated transcriptional and epigenetic legislation in plants. Curr. Opin. Plant Biol. 60 , 101980 (2021
Jogam, P. et al. An analysis on CRISPR/Cas-based epigenetic standard in plants. Int. J. Biol. Macromol. 219 , 1261– 1271 (2022
Zhang, Y. et al. Enhancing the level of plant genome layout with Cas 12 a orthologs and very multiplexable modifying and boosting systems. Nat. Commun. 12 , 1944 (2021
Kavuri, N. R., Ramasamy, M., Qi, Y. & & Mandadi, K. Applications of CRISPR/Cas 13 -based RNA modifying in plants. Cells 11 , 2665 (2022
Wada, N., Osakabe, K. & & Osakabe, Y. Broadening the plant genome changing tool kit with lately produced CRISPR– Cas systems. Plant Physiol. 188 , 1825– 1837 (2022
Cassan, O. et al. A genes regulating network in Arabidopsis origins subjects characteristics and governing authorities of the plant responses to raised carbon monoxide 2 New Phytol. 239 , 992– 1004 (2023
Yuan, Y. et al. Translating the genes regulative network of endosperm distinction in maize. Nat. Commun. 15 , 34 (2024
Zhang, Y. et al. Rice co-expression network evaluation determines genetics components related to agronomic qualities. Plant Physiol. 190 , 1526– 1542 (2022
Li, C. et al. A new rice reproduction approach: CRISPR/Cas 9 system modifying of the Xa 13 marketing expert to grow transgene-free microbial blight-resistant rice. Plant Biotechnol. J. 18 , 313– 315 (2020
Peng, A. et al. Design canker-resistant plants with CRISPR/Cas 9 -targeted modifying and enhancing of the susceptability genetics Cs LOB 1 marketing expert in citrus. Plant Biotechnol. J. 15 , 1509– 1519 (2017
Kumar, J. et al. Reliable healthy protein tagging and cis -regulating part design using exact and directional oligonucleotide-based targeted insertion in plants. Plant Cell 35 , 2722– 2735 (2023
Dong, O. X. & & Ronald, P. C. Targeted DNA insertion in plants. Proc. Natl Acad. Sci. U.S.A. 118 , e 2004834117 (2021
Dong, O. X. et al. Marker-free carotenoid-enriched rice produced by means of targeted genetics insertion utilizing CRISPR– Cas 9 Nat. Commun. 11 , 1178 (2020
Claeys, H. et al. Dealt with genetics upregulation in maize with CRISPR/Cas-mediated booster insertion. Plant Biotechnol. J. 22 , 16– 18 (2024
Sunlight, C. et al. Accurate assimilation of huge DNA series in plant genomes using PrimeRoot editors. Nat. Biotechnol. 42 , 316– 327 (2024
Vazquez-Vilar, M., Selma, S. & & Orzaez, D. The design of fabricated genes circuits in plants: new components, old barriers. J. Exp. Robot. 74 , 3791– 3805 (2023
Brophy, J. A. N. et al. Fabricated hereditary circuits as a way of reprogramming plant beginnings. Scientific Research 377 , 747– 751 (2022
Khan, M. A. et al. CRISPRi-based circuits to take care of genetics expression in plants. Nat. Biotechnol. 43 , 416– 430 (2025
Staub, J. E., Serquen, F. C. & & Gupta, M. Genetic pens, map structure and building and construction, and their application in plant reproduction. HortScience 31 , 729– 741 (1996
Pรฉrez-de-Castro, A. M. et al. Application of genomic devices in plant recreation. Curr. Genomics 13 , 179– 195 (2012
Chung, Y. S., Choi, S. C., Jun, T.-H. & & Kim, C. Genotyping-by-sequencing: an appealing gadget for plant genes research study and reproduction. Hortic. Environ. Biotechnol. 58 , 425– 431 (2017
Zhang, H. et al. QTG-seq rises QTL terrific mapping by means of QTL dividing and whole-genome sequencing of bulked segregant instances. Mol. Plant 12 , 426– 437 (2019
Jamil, I. N. et al. Organized multi-omics adaptation (MOI) strategy in plant systems biology. Front. Plant Sci. 11 , 944 (2020
Mounet, F. et al. Genes and metabolite governing network analysis of really early developing fruit cells highlights new possibility genes for the control of tomato fruit makeup and development. Plant Physiol. 149 , 1505– 1528 (2009
Larriba, E., Nicolรกs-Albujer, M., Sรกnchez-Garcรญa, A. B. & & Pรฉrez-Pรฉrez, J. M. Recognition of transcriptional networks related to afresh body organ growth in tomato hypocotyl explants. Int. J. Mol. Sci. 23 , 16112 (2022
Sacco, A., Raiola, A., Calafiore, R., Barone, A. & & Rigano, M. M. New understandings in the control of anti-oxidants accumulation in tomato by transcriptomic evaluations of genotypes showing various levels of fruit metabolites. BMC Genomics 20 , 43 (2019
Hale, B. et al. Genes governing network thinking in soybean upon infection by Phytophthora sojae PLoS ONE 18 , e 0287590 (2023
Pradeepkumara, N. et al. Fruit transcriptional profiling of the different genotypes for life span reveals the crucial prospect genes and molecular courses controling post-harvest biology in cucumber. Genomics 114 , 110273 (2022
Jaiswal, S. et al. Transcriptomic hallmark of drought feedback in pearl millet ( Pennisetum glaucum (L.) and growth of web-genomic resources. Sci. Rep. 8 , 3382 (2018
Yi, F., Huo, M., Li, J. & & Yu, J. Time-series transcriptomics subjects a drought-responsive temporal network and crosstalk in between drought tension and anxiousness and the circadian clock in foxtail millet. Plant J. 110 , 1213– 1228 (2022
Kaur, B. et al. Omics for the improvement of abiotic, organic, and agronomic qualities in significant grain plants: applications, barriers, and prospective clients. Plants 10 , 1989 (2021
De Clercq, I. et al. Integrative reasoning of transcriptional networks in Arabidopsis returns unique ROS signalling governing authorities. Nat. Plants 7 , 500– 513 (2021
Chen, Y. et al. A wheat integrative governing network from big matching beneficial datasets enables trait-associated genetics expedition for plant improvement. Mol. Plant 16 , 393– 414 (2023
Wei, X. et al. Genomic assessment of 18, 421 lines subjects the hereditary design of rice. Scientific Research 385 , eadm 8762 (2024
Munns, R. & & Tester, M. Instruments of salinity resistance. Annu. Rev. Plant Biol. 59 , 651– 681 (2008
Shrivastava, P. & & Kumar, R. Dust salinity: a serious ecological worry and plant growth advertising microorganisms as one of the tools for its reduction. Saudi J. Biol. Sci. 22 , 123– 131 (2015
Ruz, G. A., Timmermann, T. & & Goles, E. Repair of a GRN layout of salt stress responses in Arabidopsis taking advantage of hereditary solutions. 2015 IEEE Workshop on Computational Understanding in Bioinformatics and Computational Biology (CIBCB) 1– 8 (2015
Hu, J. et al. Time-series transcriptome contrast discloses the genetics plan network under salt tension and anxiousness in soybean ( Glycine max beginnings. BMC Plant Biol. 22 , 157 (2022
Wang, R. et al. Relative evaluation of salt receptive genes regulative networks in rice and Arabidopsis Comput. Biol. Chem. 85 , 107188 (2020
Wang, B. et al. The transcriptional regulative network of hormone representatives and genetics under salt stress in tomato plants ( Solanum lycopersicum L.). Front. Plant Sci. 14 , 1115593 (2023
Hu, W., Ren, Q., Chen, Y., Xu, G. & & Qian, Y. Genome-wide recognition and analysis of WRKY genes house in maize give understandings right into regulative network in responses to abiotic anxieties. BMC Plant Biol. 21 , 427 (2021
Track, L. et al. A transcription element chain of command defines an eco-friendly stress response network. Scientific Research 354 , aag 1550 (2016
Ecker, J. & & Song, L. Environmental stress activity transcriptional regulative network. USA permit 20, 180, 112, 228 (2018
Tian, H. et al. An one-of-a-kind family members of transcription elements conserved in angiosperms is required for ABA signalling. Plant Cell Environ. 40 , 2958– 2971 (2017
Chen, S. et al. Ko of the entire member of the family of AITR genes in Arabidopsis results in increased dry spell and salinity resistance without fitness costs. BMC Plant Biol. 21 , 137 (2021
Li, G. et al. CRISPR/Cas 9 genetics modifying and enhancing of NTAITRs, a relative of transcription repressor genes, triggers boosted drought resistance in cigarette. Int. J. Mol. Sci. 23 , 15268 (2022
Wang, T. et al. Anomaly of GmAITR genes by CRISPR/Cas 9 genome modifying results in boosted salinity anxiousness resistance in soybean. Front. Plant Sci. 12 , 779598 (2021
Wang, T. et al. Development of AITR member of the family genetics in cotton and their features in abiotic stress resistance. Plant Biol. 23 , 58– 68 (2021
Gao, Y. et al. Variety and redundancy of the ripening governing networks disclosed by the fruitENCODE and the brand-new CRISPR/Cas 9 CNR and NOR mutants. Hortic. Res. 6 , 39 (2019
Cai, J. et al. FvMYB 79 positively handles strawberry fruit softening with transcriptional activation of Fv PME 38 Int. J. Mol. Sci. 23 , 101 (2021
Lakhwani, D. et al. Genome big acknowledgment of MADS box genetics member of the family in Musa balbisiana and their aberration throughout development. Genes 836 , 146666 (2022
Nobori, T. et al. An uncommon overview cell state in plant resistance. Nature 638 , 197– 205 (2025
Lee, T. A. et al. A single-nucleus atlas of seed-to-seed development in Arabidopsis Preprint at bioRxiv https://doi.org/ 10 1101/ 2023 03ย 23ย 533992 (2023
Swift, J. et al. Exaptation of genealogical cell-identity networks makes it possible for C 4 photosynthesis. Nature 636 , 143– 150 (2024
Ferrari, C., Manosalva Pรฉrez, N. & & Vandepoele, K. MINI-EX: integrative thinking of single-cell genes regulative networks in plants. Mol. Plant 15 , 1807– 1824 (2022
Philips, T. Genetically personalized microorganisms (GMOs): transgenic plants and recombinant DNA innovation. Nat. Educ. 1 , 213 (2008
Bawa, A. S. & & Anilakumar, K. R. Genetically customized foods: safety, risks and public fears– a review. J. Food Sci. Technol. 50 , 1035– 1046 (2013
Friedrichs, S. et al. Fulfilling document of the OECD conference on ‘Genome Editing And Enhancing: Applications in Farming– Ramifications for Health, Environment and Standard’. Transgenic Res. 28 , 419– 463 (2019
Tian, Z., Wang, J.-W., Li, J. & & Han, B. Creating future plants: barriers and strategies for lasting farming. Plant J. 105 , 1165– 1178 (2021
Turnbull, C., Lillemo, M. & & Hvoslef-Eide, T. A. K. International policy of genetically customized plants among the genes modified plant boom– an assessment. Front. Plant Sci. 12 , 630396 (2021
European Parliament. 2023/ 0226 (COD)– 24/ 04/ 2024– Plants Gotten by Certain New Genomic Approaches and Their Food and Feed www.europarl.europa.eu/news/en/press-room/ 20240202 IPR 17320/ new-genomic-techniques-meps-back-rules-to-support-green-transition-of-farmers (2024
Mehta, D. EU recommendation on CRISPR-edited plants rates– nevertheless not enough. Nature 619 , 437 (2023
Vanderschuren, H., Chatukuta, P., Weigel, D. & & Mehta, D. A brand-new possibility for genome changing in Europe. Nat. Biotechnol. 41 , 1378– 1380 (2023
Check out the complete brief write-up from the first source
.